Объем конуса — 135, точка делит высоту в отношении 1:2

Задание

Объем конуса равен 135. Через точку, делящую высоту конуса в отношение 1:2, считая от вершины, проведена плоскость, параллельная основанию. Найдите объем конуса, отсекаемого от данного конуса, проведенной плоскостью.

Объем конуса - 135, точка делит высоту в отношении 1:2

Решение

  1. Объем конуса равен одной трети произведения площади его основания на высоту. Основанием конуса является круг, тогда объем конуса равен:

V = 1/3*Sоснования*h =1/3*π*D2/4*h

  1. Для удобства введем буквенные обозначения (так как представлено на рисунке). Треугольники АВС и АНМ – подобны по трем углам. Из подобия треугольников следует:

ВС:НМ = AO:AS = 1:3 (из условия AO:OS = 1:2), получаем НМ = 3*ВС, AS = 3*AO

  1. Тогда объём изначального конуса равен:

V1 = 1/3*π*D2/4*h = 1/3*π*НМ2*АS =1/3*π*(3*BC)2*(3*AO) = 135

  1. Объём второго конуса (отсекаемого от исходного) равен:

V2 = 1/3*π*D2/4*h = 1/3*π*ВС2*AO

  1. Определим, во сколько раз объем изначального конуса больше объема отсекаемого. Для этого разделим объем первого конуса на объем второго:

V1/V2 = (1/3*π*(3*BC)2*(3*AO))/(1/3*π*ВС2*AO) = 27

В 27 раза объем изначального конуса больше объема отсекаемого.

  1. Осталось найти объем конуса, отсекаемого от исходного конуса, проведенной плоскостью:

V2 = V1/27 = 135/27 = 5 – объем конуса, отсекаемого от исходного конуса.

Ответ: 5

Оцените статью
smartrepetitor.ru
Добавить комментарий

Проверка комментариев включена. Прежде чем Ваши комментарии будут опубликованы пройдет какое-то время.