Задание
Объем конуса равен 168. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.
Решение
Объем конуса равен 1/3 произведения его высоты на площадь основания, а площадь основания — это площадь круга: V=1/3*h*Socн=1/3*h*π*(D/2)2.
- Известно, что высота большего конуса в два раза больше высоты меньшего. Определим во сколько раз основание меньшего конуса меньше большего.
Для удобства введем буквенные обозначения, как показано на рисунке, и рассмотрим треугольники АSВ и А‘SВ‘. Данные треугольники подобны. Из этого делаем вывод, что основание АВ больше основания А‘В‘ в два раза, так высота треугольника АSВ в два раза больше высоты треугольника А‘SВ‘.
- АВ и А‘В‘ являются диаметрами оснований конусов. Запишем, чему равен объем большего конуса в буквенном виде:
Vбол = 1/3*h*π*(D/2)2
- Запишем, чему равен объем меньшего конуса и преобразуем получившееся выражение:
Vмен = 1/3*h/2*π*(D/2/2)2 = (1/3*h*π*(D/2)2)/(2*4) = Vбол/8 = 168/8 = 21
21 – объем меньшего конуса.
Ответ: 21