Прямая у=6х+6 параллельна касательной к графику функции у=(х^2)+7х-7

Прямая у=6х+6 параллельна касательной к графику функции у=х2+7х-7. Найдите абсциссу точки касания.

Решение

  1. Для решения данной задачи необходимо знать, что значение производной функции в точке касания равно угловому коэффициенту касательной.

Поэтому для решения данной задачи сперва найдем производную от функции, а затем приравняем к угловому коэффициенту, тем самым найдем абсциссу точки касания.

  1. Угловой коэффициент прямой – это коэффициент, стоящий перед х, если уравнение прямой записать в следующем виде: у = kх + b, где k – и есть угловой коэффициент.
  2. В задаче сказано, что прямая у = 6х + 6 параллельна касательной, а это значит что у данной прямой и касательной один и тот же угловой коэффициент, который равен 6 (стоит перед х).
  3. Найдем производную от самой функции, тем самым найдет значение углового коэффициента касательной:

y = (х2 + 7х — 7)
y =(х2) + (7х) — 7 = 2х + 7

Осталось приравнять полученный угловой коэффициент к 6 и найти значение абсциссы точки касания, а именно х:
2х+7 = 6
2х = 6-7
2х = -1
х = -0,5  – абсцисса точки касания

Ответ: -0,5

Оцените статью
smartrepetitor.ru
Добавить комментарий

Проверка комментариев включена. Прежде чем Ваши комментарии будут опубликованы пройдет какое-то время.