Задача 13 (№ 1759) — В сосуде, имеющем форму конуса

Условие

В сосуде, имеющем форму конуса, уровень жидкости достигает 4/5 высоты. Объем сосуда 1950 мл. Чему равен объем налитой жидкости? Ответ дайте в миллиметрах.

1749

Решение

  1. Объем конуса равен 1/3 произведения его высоты на площадь основания, а площадь основания — это площадь круга:

 V = 1/3 · h · Socн = 1/3 · h · π · (D/2)2.

  1. Для решения данной задачи будем рассматривать объемы двух конусов:

объем конуса, у которого уровень жидкости равен 4/5  высоты – V4/5,

объем конуса, равный объему сосуда – Vсосуд

  1. Для удобства введем буквенные обозначения, как показано на рисунке, и рассмотрим треугольники АSВ и А. Данные треугольники подобны. Из этого делаем вывод, что основание АВ больше основания АВ в 5/4 раза, так как высота треугольника АSВ в 5/4 раза больше высоты треугольника А.
  2. АВ и АВ являются диаметрами оснований конусов.
  3. Запишем, чему равен объем большего конуса в буквенном виде:

Vсосуд = 1/3 · h · π · (D/2)2

  1. Теперь запишем, чему равен объем меньшего конуса и преобразуем получившееся выражение:

V4/5= 1/3 · h/(5/4) · π · (D/2/(5/4))2 = (1/3 · h · π · (D/2)2) / (5/4 · 25/16) = Vсосуд / 1,953125

  1. Осталось подставить объем сосуда в полученную формулу и найти объем налитой жидкости:

V4/5 = Vсосуд / 1,953125 = 1950 / 1,953125 = 998,4 мл

Ответ: 998,4 мл

Adblock detector