Условие
В сосуде, имеющем форму конуса, уровень жидкости достигает 3/4 высоты. Объем сосуда равен 1680 мл. Чему равен объем налитой жидкости? Ответ дайте в миллиметрах.

Решение
- Объем конуса равен 1/3 произведения его высоты на площадь основания, а площадь основания — это площадь круга:
V = 1/3 · h · Socн = 1/3 · h · π · (D/2)2.
- Для решения данной задачи будем рассматривать объемы двух конусов:
объем конуса, у которого уровень жидкости равен 3/4 высоты – V3/4,
объем конуса, равный объему сосуда – Vсосуд
- Для удобства введем буквенные обозначения, как показано на рисунке, и рассмотрим треугольники АSВ и А‘SВ‘. Данные треугольники подобны. Из этого делаем вывод, что основание АВ больше основания А‘В‘ в 4/3 раза, так как высота треугольника АSВ в 4/3 раза больше высоты треугольника А‘SВ‘.
- АВ и А‘В‘ являются диаметрами оснований конусов.
- Запишем, чему равен объем большего конуса в буквенном виде:
Vсосуд = 1/3 · h · π · (D/2)2
- Теперь запишем, чему равен объем меньшего конуса и преобразуем получившееся выражение:
V3/4= 1/3 · h/(4/3) · π · (D/2/(4/3))2 = (1/3 · h · π · (D/2)2) / (4/3 · 16/9) = Vсосуд / (4/3 · 16/9)
- Осталось подставить объем сосуда в полученную формулу и найти объем налитой жидкости:
V3/4= Vсосуд / (4/3 · 16/9) = 1680 / (4/3 · 16/9) = 708,75 мл
Ответ: 708,75 мл