Сосуд в форму конуса, уровень 1/2, объем 70 мл

Задание

В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2 высоты. Объем жидкости равен 70 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

1706

Решение

  1. Объем конуса равен 1/3 произведения его высоты на площадь основания, а площадь основания — это площадь круга:

V = 1/3*h*Socн = 1/3*h*π*(D/2)2.

  1. Для решения данной задачи будем рассматривать объемы двух конусов:
  • объем конуса, у которого уровень жидкости равен 1/2  высоты – Vмен,
  • объем конуса, наполненный доверху – Vбол
  1. Нам известно, что высота большего конуса в два раза больше высоты меньшего. Определим во сколько раз основание меньшего конуса меньше большего.
  2. Для удобства введем буквенные обозначения, как показано на рисунке, и рассмотрим треугольники АSВ и А. Данные треугольники подобны. Из этого делаем вывод, что основание АВ больше основания АВ в 2 раза, так как высота треугольника АSВ в 2 раза больше высоты треугольника А.
  3. АВ и АВ являются диаметрами оснований конусов. Запишем, чему равен объем большего конуса в буквенном виде:

Vбол = 1/3·h·π·(D/2)2

  1. Теперь запишем, чему равен объем меньшего конуса и преобразуем получившееся выражение:

Vмен = 1/3·h/2·π·(D/2/2)2 = (1/3·h·π·(D/2)2)/(2·4) = Vбол/8 = 70 мл

  1. Найдем объем заполненного цилиндра, то есть объем большего конуса:

Vбол/8 = 70 мл
Vбол = 70·8 = 560 мл

  1. Осталось вычислить, сколько жидкости необходимо долить, чтобы заполнить сосуд доверху:

Vбол–Vмен = 560–70 = 490 мл необходимо долить.

Ответ: 420 мл

Оцените статью
smartrepetitor.ru
Добавить комментарий

Проверка комментариев включена. Прежде чем Ваши комментарии будут опубликованы пройдет какое-то время.