Всего 350 участников, в первых двух аудиториях по 140 человек

Задание

На олимпиаде по обществознанию участников рассаживают по трем аудиториям. В первых двух по 140 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчете выяснилось, что всего было 350 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Решение

  1. Данную задачу будем решать по формуле:

Р(А) = m/n

Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.

  1. Применим данную теорию к нашей задаче:
  • А – событие, при котором случайно выбранный участник писал олимпиаду в запасной аудитории;
  • Р(А) – вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
  1. Определим m и n:

m  — число благоприятствующих этому событию исходов, то есть число исходов, когда случайно выбранный участник писал олимпиаду в запасной аудитории. Это число равно количеству участников, которые пойдут писать олимпиаду в запасную аудиторию:

m = 350-140-140 = 70

n – общее число всевозможных исходов, оно равно общему количеству участников:

n = 350

Осталось найти вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории:

Р(А) = 70/350= 0,2

Ответ: 0,2

Оцените статью
smartrepetitor.ru