Задание
На олимпиаде по обществознанию участников рассаживают по трем аудиториям. В первых двух по 140 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчете выяснилось, что всего было 350 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
Решение
- Данную задачу будем решать по формуле:
Р(А) = m/n
Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.
- Применим данную теорию к нашей задаче:
- А – событие, при котором случайно выбранный участник писал олимпиаду в запасной аудитории;
- Р(А) – вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
- Определим m и n:
m — число благоприятствующих этому событию исходов, то есть число исходов, когда случайно выбранный участник писал олимпиаду в запасной аудитории. Это число равно количеству участников, которые пойдут писать олимпиаду в запасную аудиторию:
m = 350-140-140 = 70
n – общее число всевозможных исходов, оно равно общему количеству участников:
n = 350
Осталось найти вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории:
Р(А) = 70/350= 0,2
Ответ: 0,2