В основании прямой призмы лежит квадрат со стороной 7

Задание

В основании прямой призмы лежит квадрат со стороной 7. Боковые ребра призмы равны 2/π. Найдите объём цилиндра, описанного около этой призмы.

4971

Решение

  1. Объем цилиндра равен произведению его высоты на площадь основания. А площадь основания равна площади круга: V=h*Socн=h*π*r2.
  2. Высота цилиндра известна, она равна боковому ребру призмы, то есть 2/π.
  3. Осталось найти площадь основания.

В основании лежит квадрат, причем по рисунку видим, что диагональ данного квадрата проходит через центр основания, тем самым являясь диаметром круга, лежащего в основании цилиндра.

Данная диагональ разбивает квадрат на два прямоугольных треугольника. Поэтому найдем диагональ (которая является диаметром) по теореме Пифагора:

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

D2 = 72+72 = 49+49 = 98

D = √98 — диаметр основания цилиндра.

  1. Найдем площадь основания:

S = π*(√98/2)2 = 24,5π

  1. Осталось найти объем цилиндра:

V = 2/π*24,5π = 49 – объем цилиндра.

Ответ: 49

Оцените статью
smartrepetitor.ru
Добавить комментарий

Проверка комментариев включена. Прежде чем Ваши комментарии будут опубликованы пройдет какое-то время.