Задача 10 (№ 1202) — В случайном эксперименте симметричную монету бросают дважды

Условие

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что во второй раз выпадет то же, что и в первый.

Решение

  1. Данную задачу будем решать по формуле:

Р(А) = m / n

Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.

  1. Применим данную теорию к нашей задаче:

А – событие, когда во второй раз выпадет то же, что и в первый;

Р(А) – вероятность того, что во второй раз выпадет то же, что и в первый.

  1. Определим m и n:

m  — число благоприятствующих этому событию исходов, то есть число исходов, когда во второй раз выпадет то же, что и в первый. В эксперименте бросают монету дважды, которая имеет 2 стороны: решка (Р) и орел (О). Нам необходимо, чтобы во второй раз выпадет то же, что и в первый, а это возможно тогда, когда выпадут следующее комбинации: ОО или РР,  то есть получается, что

m = 2, так как возможно 2 варианта, когда во второй раз выпадет то же, что и в первый;

n – общее число всевозможных исходов, то есть для определения n нам необходимо найти количество всех возможных комбинаций, которые могут выпасть при бросании монеты дважды. Кидая первый раз монету может выпасть либо решка, либо орел, то есть возможно два варианта. При бросании второй раз  монету возможны точно такие же варианты. Получается, что

n = 2 · 2  = 4

  1. Осталось найти вероятность того, что во второй раз выпадет то же, что и в первый:

Р(А) = m / n = 2/4 = 0,5

Ответ: 0,5

smartrepetitor.ru
Adblock detector