Задание 8 (№ 6055)

Прямая у = 2х + 5 параллельна касательной к графику функции у =х3 — 4х2 + 6х + 5. Найдите абсциссу точки касания.

Решение

  1. Для решения данной задачи необходимо знать, что значение производной функции в точке касания равно угловому коэффициенту касательной.
  2. Угловой коэффициент прямой – это коэффициент, стоящий перед х, если уравнение прямой записать в следующем виде: у = kх + b, где k – и есть угловой коэффициент.
  3. В задаче сказано, что прямая у = 2х + 5 параллельна касательной, а это значит что у данной прямой и касательной один и тот же угловой коэффициент, который равен 2 (стоит перед х).

6055

6055-1