Задача 13 (№ 1717) — В сосуде, имеющем форму конуса

Условие

В сосуде, имеющем форму конуса, уровень жидкости достигает 1/4 высоты. Объем жидкости равен 80 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

1706

Решение

  1. Объем конуса равен 1/3 произведения его высоты на площадь основания, а площадь основания — это площадь круга:

V = 1/3 · h · Socн = 1/3 · h · π · (D/2)2.

  1. Для решения данной задачи будем рассматривать объемы двух конусов:

объем конуса, у которого уровень жидкости равен 1/4  высоты – Vмен,

объем конуса, наполненный доверху – Vбол

  1. Нам известно, что высота большего конуса в 4 раза больше высоты меньшего.
  2. Определим во сколько раз основание меньшего конуса меньше большего.
  3. Для удобства введем буквенные обозначения, как показано на рисунке, и рассмотрим треугольники АSВ и А. Данные треугольники подобны. Из этого делаем вывод, что основание АВ больше основания АВ в 4 раза, так как высота треугольника АSВ в 4 раза больше высоты треугольника А.
  4. АВ и АВ являются диаметрами оснований конусов.
  5. Запишем, чему равен объем большего конуса в буквенном виде:

Vбол = 1/3 · h · π · (D/2)2

  1. Теперь запишем, чему равен объем меньшего конуса и преобразуем получившееся выражение:

Vмен = 1/3 · h/4 · π · (D/2/4)2 = (1/3 · h · π · (D/2)2) / (4 · 16) = Vбол / 64 = 80 мл

  1. Найдем объем заполненного цилиндра, то есть объем большего конуса:

Vбол / 64 = 80 мл

Vбол = 80 · 64 = 5120 мл

  1. Осталось вычислить, сколько жидкости необходимо долить, чтобы заполнить сосуд доверху:

Vбол – Vмен = 5120 – 80 = 5040 мл необходимо долить.

Ответ: 5040 мл